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Abstract

We propose an unconventional but highly effective ap-
proach to robust fitting of multiple structures by using sta-
tistical learning concepts. We design a novel Mercer kernel
for the robust estimation problem which elicits the poten-
tial of two points to have emerged from the same underly-
ing structure. The Mercer kernel permits the application of
well-grounded statistical learning methods, among which
nonlinear dimensionality reduction, principal component
analysis and spectral clustering are applied for robust fit-
ting. Our method can remove gross outliers and in par-
allel discover the multiple structures present. It functions
well under severe outliers (more than 90% of the data) and
considerable inlier noise without requiring elaborate man-
ual tuning or unrealistic prior information. Experiments on
synthetic and real problems illustrate the superiority of the
proposed idea over previous methods.

1. Introduction
Outliers in data almost unavoidably arise in practical

computer vision problems due to the imperfect processes in

the feature extraction pipeline. To mitigate the debilitating

influence of severe outliers on model fitting, robust statisti-

cal approaches have been applied extensively in computer

vision. While many robust statistical approaches such as

LMedS and M-estimators originated in the statistics com-

munity [7], the widespread usage of robust statistics in vi-

sion also motivated the invention of other methods such as

RANSAC [4] and the Hough Transform [3].

In the context of practical vision applications, a robust

fitting method should possess several desirable characteris-

tics. Since outlier rates of more than 50% are very prevalent

in vision, a method must be capable of tolerating a large

number of outliers to ensure basic applicability. A compe-

tent method should also be able to handle significant inlier

variability, and if possible provide an accurate estimate of

the scale of inlier noise. It is also very common for the data

to contain multiple instances of a model where the points

belonging to each structure act as pseudo-outliers to the oth-

ers, thus the method must also unearth all of the structures

present without a priori knowing how many exist.

Generally speaking robust fitting techniques have fol-

lowed either one of the two following paradigms: (1) Gen-

erate putative model hypotheses based on random subsets

of the input data and find the hypothesis which maximizes

some fitting criterion, e.g. [7, 4, 6, 13, 1, 17]. To fit multiple

structures one can apply a particular method sequentially by

removing the inliers of a structure at each iteration. (2) De-

tect clusters directly in the parameter space of the model,

where each cluster is indicative of an instance of the model

in the data, e.g. [3, 18, 11]. For computational feasibility,

these methods often sample the parameter space by gener-

ating random hypotheses from subsets of the data.

The two categories differ in how well they satisfy the

properties desirable of robust fitting methods. Techniques

in the first group are generally very robust towards out-

liers, where empirical breakdown points of more than 80%

have been reported [17]. However they are generally sub-

optimal in discovering multiple structures, since disastrous

outcomes can be obtained if the initial fits are not accurate

and the wrong inliers are removed (or even if the initial fits

are accurate but the estimated inlier scale is wrong). Sec-

ondly, devising a stopping criterion to reflect the true num-

ber of structures is non-trivial. On the other hand methods

in the second group are not affected by the perils of sequen-

tial fitting. However, besides suffering from poor compu-

tational efficiency and a generally lower tolerance to gross

outliers, it is not easy to deduce the number of true clusters.

In this paper we propose a novel solution to robust statis-

tics by using statistical learning concepts. Our method is

fundamentally different since it does not follow either of the

categories above. Instead of sampling and scoring random

hypotheses or clustering in the parameter space, we exam-

ine relations between data points. Central to our approach

is to craft a Mercer kernel between two points which elic-

its their potential of arising from a common structure. The

Mercer kernel induces a Reproducing Kernel Hilbert Space

(RKHS) which permits us to draw from the vast body of lit-
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(a) Input data: 92% outliers, inlier σ = 0.01.
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(b) Gross outlier removal
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(c) Multiple structure discovery

Figure 1. Summary of the proposed method using actual results on 2D line fitting of 5 lines. (a) Input data of 650 points, with 50 inliers

per line and 400 gross outliers (i.e. outlier rate of 92.31%). The inliers are perturbed with Gausian noise of σ = 0.01 which is high relative

to the range of values of the data (i.e. [0 1 0 1]). (b) Step 1: Gross outlier removal. (c) Step 2: Multiple structure discovery.

erature on statistical learning theory [15, 9]. In the RKHS

we perform dimensionality reduction, principal component

analysis and spectral clustering on the data points for robust

fitting. The proposed method can effectively remove gross

outliers in the data and in parallel discover the multiple

structures present. It exhibits considerable tolerance to in-

lier noise and high resistance to severe outliers encompass-

ing more than 90% of the data. It also does not require ex-

cessive manual tuning or unrealistic prior information of the

data typical of previous methods like RANSAC [4] (manu-

ally set inlier threshold) or multiRANSAC [21] (requires

prior knowledge of the number of structures). Fig. 1 sum-

marizes the proposed method.

We emphasize that the Mercer kernel is primarily used

in statistical learning, and we do not perform kernel-based

mean-shift clustering [2, 11] or density estimation [17, 16].

Our method follows recent developments in robust statis-

tics. Zhang and Kosecká [20, 19] advanced a different view

of the problem of analyzing the distribution of the residuals

of random hypotheses to a point. In such an arrangement,

the multiple structures are revealed as multiple modes in the

distribution, and it is proposed [20] that these can be discov-

ered via nonparametric mode seeking. Unfortunately severe

outliers and incorrect bandwidth estimates for density es-

timation can easily produce many false peaks and valleys

which obscure the genuine modes. In a later work [19] sim-

ple statistics like skewness and kurtosis of the distribution

are used to separate inliers and outliers, but this is confined

to data with a single structure only. Building upon [20],

Toldo and Fusiello [12] proposed a “conceptual representa-

tion” for robust fitting, essentially a reduction of the param-

eter space to a one-dimensional discrete space of hypothe-

sis indices. Robust fitting proceeds by agglomerative clus-

tering of the conceptual representation of the data points.

This however has serious drawbacks. Firstly to build the

representation a manually determined inlier threshold must

be supplied, and secondly their agglomerative clustering

method requires a pre-defined cut-off threshold related to

the prior knowledge of how many points each underlying

model instance possesses. Their approach is thus mired in a

RANSAC-like dependence on manual parameter input.

Our major contribution is a novel Mercer kernel for the

robust estimation problem. In Sec. 2, we describe the Mer-

cer kernel and show how it can be used in conjunction with

statistical learning concepts for effective gross outlier re-

moval. Sec. 3 explains how, based on the Mercer kernel,

nonlinear principal component analysis and spectral clus-

tering are performed on the data for multiple structure dis-

covery. Sec. 4 presents results on synthetic and real data,

and in Sec. 5 we draw conclusions and state future work.

2. Gross Outlier Removal
This section describes how gross outliers can be effec-

tively removed with kernel methods. Let the model to be

fitted be determined by p parameters. Given input data

{xi}i=1,...,N of N points our approach begins by randomly

sampling a set ofM model hypotheses {θj}j=1,...,M , where

each hypothesis θj is fitted from a minimal subset of p
points. Various sampling strategies [13, 20, 12] can be ap-

plied to ensure that at least K hypotheses, where K < M ,

are generated from pure inliers only. We emphasize that we

do not score and rank the random hypotheses.

2.1. A Mercer Kernel for Robust Fitting

For each data point xi compute its absolute residual set

ri = {ri
1, . . . , r

i
M} as measured to the M hypotheses. We

sort the elements in ri to obtain the sorted residual set

r̃i = {ri
λi

1
, . . . , ri

λi
M
}, where the permutation {λi

1, . . . , λ
i
M}

is obtained such that ri
λi

1
≤ · · · ≤ ri

λi
M

. Define the sorted
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hypothesis set of point xi as

θ̃i := {λi
1, . . . , λ

i
M}, (1)

i.e. θ̃i depicts the order in which xi becomes the inlier of

theM hypotheses as a fictitious inlier threshold is increased

from 0 to∞. We define the Ordered Residual Kernel (ORK)

between two data points as

kr̃(xi1 , xi2) :=
1
Z

M/h∑

t=1

zt · kt
∩(θ̃i1 , θ̃i2), (2)

where zt = 1
t are the harmonic series and Z =

∑M/h
t=1 zt is

the (M/h)-th harmonic number. Without lost of generality

assume that M is wholly divisible by h. Step size h is used

to obtain the Difference of Intersection Kernel (DOIK)

kt
∩(θ̃i1 , θ̃i2) :=

1
h

(|θ̃1:αt
i1

∩ θ̃1:αt
i2

| − |θ̃1:αt−1
i1

∩ θ̃
1:αt−1
i2

|)
(3)

where αt = th and αt−1 = (t−1)h. Symbol θ̃a:b
i indicates

the set formed by the a-th to the b-th elements of θ̃i. Since

the contents of the sorted hypotheses set are merely permu-

tations of {1 . . .M}, i.e. there are no repeating elements,

0 ≤ kr̃(xi1 , xi2) ≤ 1. (4)

Note that kr̃ is independent of the type of model to be fitted.

Let τ be a fictitious inlier threshold. The kernel kr̃ cap-

tures the intuition that, if τ is low, two points arising from

the same structure will have high normalized intersection

since they share many common hypotheses. If τ is high, im-

plausible hypotheses fitted on outliers start to dominate and

decrease the normalized intersection. Step size h allows us

to quantify the rate of change of intersection if τ is increased

from 0 to ∞, and since zt is decreasing, kr̃ will evaluate to

a high value for two points from the same structure. In con-

trast, kr̃ is always low for points not from the same structure

or that are outliers. Fig. 2 demonstrates this effect. Note that

τ is merely an abstract construction— kr̃ does not require
a user input inlier threshold. Also parameter h depends

on M , a value determined based on the size of the minimal

subset and the number of data [20, 12] and is not contin-
gent on knowledge of the true inlier noise scale σ. Fig. 2

depicts the independence of h with respect to σ. This is

further substantiated by experiments in Sec. 4.

Proof of satisfying Mercer’s condition. Let D be a

fixed domain, and P(D) be the power set of D, i.e. the

set of all subsets of D. Let S ⊆ P(D), and p, q ∈ S. If μ is

a measure on the domain D, then

k∩(p, q) = μ(p ∩ q), (5)

called the intersection kernel, is provably a valid Mercer

kernel [9]. The DOIK can be rewritten as

kt
∩(θ̃i1 , θ̃i2) =

1
h

(|θ̃(αt−1+1):αt

i1
∩ θ̃

(αt−1+1):αt

i2
|

Figure 2. Normalized value of each DOIK component for kr̃ eval-

uated between two points from the same structure and two points

not from the same structure or that are gross outliers. The result

here is averaged from the 650 points in Fig. 1(a) with inlier noise

σ = 0.01 and 0.005. M and h are respectively fixed at 5000
and 50. The kernel evaluates to high and low values accordingly

without having to tune h with respect to the inlier noise scale.

+|θ̃1:(αt−1)
i1

∩ θ̃
(αt−1+1):αt

i2
|+ |θ̃(αt−1+1):αt

i1
∩ θ̃

1:(αt−1)
i2

|).
(6)

If we let D = {1 . . .M} be the set of all possible hypoth-

esis indices and μ be uniform on D, each term in Eq. (6)

is simply an intersection kernel multiplied by |D|/h. Since

multiplying a kernel with a positive constant and adding two

kernels respectively produce valid Mercer kernels [9], the

DOIK and ORK are also valid Mercer kernels.•
A Mercer kernel k(·, ·) induces a mapping φ from the in-

put space X to a possibly infinite dimensional feature space

φ : x ∈ X �−→ φ(x) = k(x, ·) ∈ Fk, (7)

where φ(x) belongs to a function space Fk that has the

structure of a so-called Reproducing Kernel Hilbert Space

(RKHS) [9]. The RKHS is endowed with an inner product,

and Mercer’s theorem implies that

〈φ(xi1), φ(xi2)〉 = k(xi1 , xi2). (8)

As a valid Mercer kernel, the ORK also induces a RKHS,

and with kr̃ we are able to perform dot products in Fkr̃
with-

out explicitly characterizing or evaluating φ.

Encapsulating a robust fitting solution in a Mercer kernel

also allows us to apply model- or domain-specific informa-

tion in a theoretically consistent manner by manipulating

the kernel function to produce a new kernel function, e.g.

knew(·, ·) = β1kr̃(·, ·) + β2k2(·, ·) + β3k3(·, ·) + . . . (9)

where β1, β2, β3, . . . are positive constants and k2(·, ·),
k3(·, ·), . . . are Mercer kernels pertaining to other informa-

tion. For example, in line or plane fitting we can exploit the

Gaussian kernel [9]

k(xi1 , xi2) = exp(−‖xi1 − xi2‖2/2σ2) (10)

to enforce the knowledge that two points arising from the

same line/plane should be relatively close in space.
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2.2. Kernel SVD Gross Outlier Removal

Denoting by A = [φ(x1) . . . φ(xN )] the matrix of the

input data after it is mapped to RKHS Fkr̃ , the kernel matrix
K = AT A is computed using the kernel function kr̃ as

Kp,q = 〈φ(xp), φ(xq)〉 = kr̃(xp, xq), p, q ∈ {1 . . . N}.
(11)

Since kr̃ is a valid Mercer kernel, K is guaranteed to be

positive semi-definite [9]. Let K = QΔQT be the eigen-

value decomposition (EVD) of K. Then the rank-n Kernel

Singular Value Decomposition (SVD) [9] of A is

An = [AQn(Δn)−
1
2 ][(Δn)

1
2 ][(Qn)T ] ≡ UnΣn(Vn)T .

(12)

Via the Matlab notation, Qn = Q:,1:n and Δn = Δ1:n,1:n.

The left singular vectors Un is an orthonormal basis for the

n-dimensional principal subspace of A in Fkr̃
. Projecting

the data onto the principal subspace yields

B = [AQn(Δn)−
1
2 ]T A = (Δn)

1
2 (Qn)T , (13)

where B = [b1 . . . bN ] ∈ R
n×N is the reduced dimension

version of A. Directions of the principal subspace are dom-

inated by inlier points, since kr̃ evaluates to a high value

generally for them, but always to a low value for gross out-

liers. Thus the vectors in B have high norms if they corre-

spond to inlier points and vice versa. Fig. 3(a) illustrates.

(a) Input data mapped to the RKHS Fkr̃
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Figure 3. (a) Gross outlier removal with Kernel SVD and structure

discovery with Kernel PCA. (b) The histogram is obtained from

the actual input data in Fig. 1(a).

This observation is exploited for gross outlier removal.

Fig. 3(b) shows the actual histogram of B vector norms of

the data in Fig. 1(a) for n = 6, a value allowing span(Un)
to encompass 90% of the singular values in Σn. The exis-

tence of two distinct modes, corresponding respectively to

inliers and gross outliers, is evident. We can thus safely

discard data with low norms as gross outliers. The cut-

off threshold ψ can be set by analyzing the distribution of

the norms. For instance we can fit a 1D Gaussian Mixture

Model (GMM) with two components

f(b) =
∑

c=1,2

πcN (b|μc, σc) (14)

on the B vector norms, where N is a Gaussian with mean

μc and standard deviation σc, and πc is the mixing coeffi-

cient. The threshold can be obtained as the point of equal

Mahalanobis distance as in Fig. 3(b), i.e.

σ2(ψ − μ1)2 = σ1(ψ − μ2)2, (15)

or as the average between the two means, i.e. ψ = 0.5(μ1 +
μ2). A threshold which is less dependent on the shape of the

distribution is the following

ψ = ρ max
i=1,...,N

(‖bi‖2), (16)

where ρ = 0.3 is empirically justified to be effective.

Eq. (16) is suitable for both clean and noisy data, i.e. there

exists either one or two modes in the B vector norm distri-

bution. Fig. 1(b) shows an actual result of the method.

Our outlier removal scheme is considerably more

tractable than the mode seeking-based method of [20].

There, the number of modes in the residual distribution

equals the unknown number of structures, thus the problem

is non-trivial (see Sec. 1). Contrast this to our case where it

is known beforehand that there are at most two modes in the

norm distribution, thus the problem is greatly simplified.

Our subspace operation also vastly differs from the

pbM-estimator’s [1], where putative subspaces in the input
space are generated, each equivalent to a model hypothe-

sis. The pbM method then seeks the subspace (equivalently,

model hypothesis) which maximizes the mode of the pro-

jection [1]. Being a method in Group 1 (see Sec. 1), pbM

faces difficulty in determining the number of structures. In

contrast, our method performs subspace projection in the

RKHS deterministically and can automatically deduce the

number of structures of generic models (Sec. 3 elaborates).

3. Discovering Multiple Structures
We fit multiple model instances based on the idea that

points from the same structure concentrate at a location in

RKHS Fkr̃
; see Fig. 3(a). This is because the kernel kr̃

(which is equivalent to a dot product in Fkr̃ ) evaluates to a

high value for points from the same structure and vice versa,

and our task is to cluster the data in Fkr̃
. This differs from

the Hough Transform [3] or mean shift-based methods [11]

which cluster the hypotheses in the parameter space.
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3.1. Kernel PCA and Spectral Clustering

Using Kernel PCA [9], we first seek a parsimonious rep-

resentation of the data which maximizes its spread in Fkr̃
.

Let {yi}i=1,...,N ′ be the N ′-point subset of the input data

that remains after outlier removal, where N ′ < N . Denote

by C = [φ(y1) . . . φ(yN ′)] the data matrix after mapping

the data to Fkr̃
, and by symbol C̃ the result of adjusting

C with the empirical mean of {φ(y1), . . . , φ(yN ′)}. The

centered kernel matrix K̃′ = C̃T C̃ can be obtained as

K̃′ = νT K′ν, ν = [IN ′ − 1
N ′

1N ′,N ′ ], (17)

where K′ = CT C is the uncentered kernel matrix, Is and

1s,s are respectively the s× s identity matrix and matrix of

ones. If K̃′ = RΩRT is the EVD of K̃′, then we obtain

first-m kernel principal components Pm of C as the first-m
left singular vectors of C̃ [9] , i.e.

Pm = C̃Rm(Ωm)−
1
2 , (18)

where Rm = R:,1:m and Ω1:m,1:m; see Eq. (12). Project-

ing the data on the kernel principal components yields

D = [d1 . . . dN ′ ] = (Ωm)
1
2 (Rm)T , (19)

where D ∈ R
m×N ′ . The affine subspace span(Pm) max-

imizes the spread of the centered data in the RKHS, as

Fig. 3(a) illustrates, and the projection D offers an effec-

tive representation of the data for clustering.

Various methods can be applied to cluster D, and we

achieve it using the Normalized Cut (Ncut) [10] method due

to its effectiveness. A fully connected graph is first derived

from the data, where its weighted adjacency matrix W ∈
R

N ′×N ′ is obtained as

Wp,q = exp(−‖dp − dq‖2/2δ2), (20)

and δ is taken as the average nearest neighbour distance

in the Euclidean sense among the vectors in D. Fig. 4(a)

shows W for the input data in Fig. 1(b) after gross outlier

removal. It can be seen that strong affinity exists between

points from the same structure. The degree G and Lapla-

cian L matrices, both of size N ′ ×N ′, are obtained as

Gp,p =
N ′∑

q=1

Wp,q and L = G−W, (21)

where the off-diagonal elements of G are zero. Under Ncut,

the number of clusters l embedded in the data is revealed as

the number of eigenvalues of L which are zero [10]. Denot-

ing by E = [e1 . . . el] ∈ R
N ′×l the l eigenvectors of L with

zero eigenvalues, a subsequent k-means step with k = l is

then performed on the rows of E to extract the clusters.

(a) Weighted adjacency matrix

with points re-arranged based on

true cluster membership.
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(b) Ncut reveals 12 clusters. The

figure is best viewed in colour.

Note that the colours repeat.

Figure 4. (a) Weighted adjacency matrix for the data in Fig. 1(b).

(b) Normalized Cut clustering results on for the data in Fig. 1(b).

In practice, due to the presence of noise and the limits of

computational precision, it is unlikely that the eigenvalues

are exactly zero. Finding a consistently accurate threshold-

ing scheme is also non-trivial, if not impossible. Thus in

our work we set a relatively high threshold of 1.0 × e−3 to

deliberately oversegment the data, as Fig. 4(b) shows. We

then resolve the redundancies by merging the structures.

3.2. Structure Merging Scheme

Our structure merging scheme operates under the objec-

tive of fitting the data with the least number of structures

possible. A model instance is first estimated from each

point cluster with LMedS [7]. The algorithm then sequen-

tially merges structures by testing, if a structure is merged

with another structure, whether the data can still be “ex-

plained” satisfactorily by the remaining structures. This

proceeds until the condition of satisfactory explanation is

violated. Algorithm 1 lists the structure merging scheme.

Algorithm 1 Structure merging scheme after Ncut

1: input: Set of l◦ point clusters C = {Cl}l=1,...,l◦ .

2: while continue = true do
3: ∀ Cl, estimate modelMl using LMedS.

4: Get ri
l,m as residual of the i-th point in Cl toMm .

5: Get ϕl as inlier threshold ofMl by Eq. (22).

6: continue = false.
7: for l = 1, . . . , |C| do
8: if (

∑
i,m �=l δ(|ri

l,m| <= ϕm)) ≥ |Cl| then
9: For all m and i, if |ri

l,m| ≤ ϕm move point i
from Cl to Cm until Cl is empty.

10: C ← C − Cl, continue = true.
11: break
12: end if
13: end for
14: end while
15: output: Model parameters for |C| ≤ l◦ structures.
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The inlier threshold for each model Ml in Step 5 of the

algorithm is calculated as

ϕl = 0.5(med(|r|inliers) +med(|r|pseudo)), (22)

where |r|inliers = {|ri
l,l|}i=1,...,|Cl| (23)

and |r|pseudo = ∪∀m�=l{|ri
m,l|}i=1,...,|Cm| (24)

are respectively the set of absolute residuals of points in

cluster Cl to model Ml and the set of absolute residuals of

the pseudo-outliers of model Ml. Function δ(·) in Step 8

is the Kronecker delta. Fig. 1(c) shows the result of this al-

gorithm on the clusters in Fig. 4(b). Note that the algorithm

is applicable to generic model types, and that compared to

other model selection based techniques, our task is consid-

erably easier since the gross outliers have been removed.

4. Results
We evaluate the performance of the proposed method

(henceforth known as Kernel Fitting or KF) in various ap-

plications with an emphasis on multiple structure discovery.

The Mercer kernel is implemented efficiently with com-

plexityO(M) using symbol tables [8] (less than 10 seconds

in total for 500 data points and 5000 random hypotheses).

Multiple 2D line fitting. Eight methods are compared in

this experiment. Table 1 depicts their dependence on man-

ual parameter inputs. Sequential fitting methods require the

true number of structures as a stopping criterion, while RHT

and J-Linkage prune clusters based on the expected num-

ber of points per structure. Only RHA and KF derive the

number of structures automatically from the data. A total of

5000 random hypotheses are generated and reused across all

methods which require them. In RANSAC and J-Linkage,

the required inlier threshold is set as twice the true inlier

noise scale. In KF, we add to the ORK the Gaussian kernel

by using the average nearest neighbour distance as its width,

and h is fixed at 100. The codes of pbM and J-Linkage are

obtained from the web1 while we implemented the others.

Methods

Parameter 1 2 3 4 5 6 7 8

Inlier noise scale/threshold ∗ ∗
Number of structures ∗ ∗ ∗ ∗

No. of points per structure ∗ ∗
Table 1. Manual parameter inputs required for each method. 1-

RANSAC [4], 2-LMedS [7], 3-ALKS [6], 4-pbM-estimator [1], 5-

Randomized Hough Transform (RHT) [18], 6-Residual Histogram

Analysis (RHA) [20], 7-J-Linkage [12] and 8-Kernel Fitting (KF).

The type of data used in this experiment is depicted in

Fig. 5 along with a few sample results (more extensive re-

sults follow). The four lines in the data are arranged to

1Respectively from http://www.caip.rutgers.edu/riul/research/code.html

and http://profs.sci.univr.it/˜fusiello/demo/jlk/.
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(a) Input data
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(f) J-Linkage

Figure 5. Input data and sample results for the multiple 2D line

fitting experiment. In this particular example there are 50 points

per line and 700 gross outliers. The inlier noise scale is 0.01.

produce a challenging configuration for line fitting. Each

line contains 50 inliers contaminated with Gaussian noise

of standard deviation σ. A total of L points of gross outliers

are also randomly inserted while maintaining the range of

the data in [0 1 0 1]. The total outlier rate is thus given by

100%× (L+ 150)/(L+ 200).
For a particular fitting result, let ω = {ω1, . . . , ωN}

and ω̂ = {ω̂1, . . . , ω̂N̂} respectively be the set of true and

estimated line parameters of a particular method, where

‖ωp‖ = 1 and ‖ω̂q‖ = 1 . The error between a pair of

parameters is obtained as ‖ωp − ω̂q‖/
√

2. We compute the

multi-structure fitting error between ω and ω̂ as

ε = |N − N̂ |+
min(N,N̂)∑

n=1

min εn. (25)

The first term penalizes incorrect estimation of the number

of structures. Symbol εn represents the set of all pairwise

error between elements in ω and ω̂ at the n-th summation,

where at each summation the pair with the lowest error in

the previous summation are removed from ω and ω̂.

We test the performance of the methods under the influ-

ence of various outlier rates and inlier noise scales. For the

former, we fix σ at 0.01 and vary L from 0 to 700 in steps of

50 (i.e. outliers rates from 75% to 94%), while for the latter

we fix L at 200 and vary σ from 0.0025 to 0.025 in steps

of 0.0025. For each L and σ, 100 repetitions of the data

are created. We compute and average the fitting error of all

methods across the repetitions. Fig. 6 shows the results. We

stress that, as shown in Table 1, the methods differ in their

level of dependence on manual parameter inputs, and KF is

given none of the prior information available to the others.

The results reveal that the simplest method (RANSAC)

can competently segment all the lines if the inlier noise

scale and number of structures is known a priori. Our pro-

posed method, however, is as accurate as “ideal” RANSAC
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Figure 6. Performance comparison under various outlier rates (top)

and inlier noise scale (bottom). For both experiments, 5000 ran-

dom hypotheses are generated for all data repetitions, while pa-

rameter h for Kernel Fitting (KF) is fixed at 100.

Figure 7. Performance of three methods in estimating the number

of structures in the data as outlier rates and inlier noise scale vary.

without having to know these parameters in advance. The

proposed Mercer kernel is also able to perform well under

a large range of inlier noise scale, as Fig. 6 (bottom) shows,

despite not being subjected to tuning (h was fixed at 100).

Among the other methods, pbM and RHT returned the low-

est error rates but they still differ by a large margin from KF

and RANSAC. Furthermore, pbM and RHT require the un-

realistic prior information of the number of structures or the

number of points per structure. We also compare the ability

of three “automatic” methods (RHA, J-Linkage, KF) in es-

timating the number of structures in the data. Fig. 7 shows

the percentage of correct estimation across the repetitions.

It can be seen that our method is able to estimate correctly

at about 80% of the time, whereas RHA and J-Linkage suc-

cumb easily to gross outliers and inlier noise.

Fig. 8 shows more results of the proposed method on

other 2D data, including on non-linear models.

Homography estimation. We test the ability of KF to
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Figure 8. Results of KF on other 2D data. Left & centre: 90%

outlier rate, σ = 0.015. Right: 93% outlier rate, σ = 0.001.

Figure 9. KF homography estimation results (in colour). The four

(top pair) and two (bottom pair) planar structures were correctly

detected. Yellow crosses are gross outliers as determined by KF.

detect planar homographies. Images of buildings in multi-

ple views were obtained from the web2 along with their pre-

computed interest point correspondences. For each image

pair, 100 spurious correspondences were randomly added

as gross outliers. For an image pair, we sample p-subsets

of 8 points which form 4 correspondences and estimate a

homography using the Direct Linear Transformation (DLT)

algorithm [5]. We generate 5000 hypotheses in this man-

ner and set h = 100 for the Mercer Kernel. The residual

is computed as the geometric distance [5] between homog-

raphy transformations. We complement the ORK with the

Gaussian kernel, since points from the same plane should

be close in 2D space. The results in Fig. 9 show that KF

is able to simultaneously recover and estimate the number

of homographies. The gross outliers were also successfully

detected and precluded from homography estimation.

Motion segmentation. We also apply KF to the task of

2From http://www.robots.ox.ac.uk/ vgg/data/data-mview.html.
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Figure 10. KF motion segmentation results (best viewed in colour).

The two objects in each sequence were correctly segmented. Yel-

low crosses indicate gross outliers as determined by KF.

segmenting the motions of multiple rigidly moving objects

under the affine camera model [14], where each motion oc-

cupies a subspace in the trajectory space. We obtain from

the web3 image sequences of multiple moving objects and

the trajectories of feature points detected within. For each

sequence, we randomly generate 100 spurious trajectories

as gross outliers. As in [14] we generate 4D subspaces as

hypotheses by invoking the SVD on p-subsets of size 4. We

produce 5000 random hypotheses per sequence, and h is set

to 100 for the Mercer kernel. The residual is computed as

the orthogonal projection distance onto the subspace. The

results4 in Fig. 10 show that KF is able to separate the true

trajectories from the false trajectories, discover the correct

number of motions in the sequences and label the feature

points according to the objects they belong to.

5. Conclusions and Future Work
We have presented a novel approach to robust fitting of

multiple structures by using statistical learning techniques.

Central to our idea is a Mercer kernel designed for the task

of robust fitting. Our approach can identify and remove

gross outliers, discover the true number of model instances

and estimate model parameters for the individual structures.

Our experiments show that the proposed method outper-

forms other methods in terms of fitting accuracy, and that

it is also highly competent in practical vision tasks.

We plan to evaluate further the performance of the pro-

posed method on publicly available benchmark datasets,

e.g. for motion segmentation [14], so that we can obtain

a comprehensive comparison against other methods. Since

3From http://www.suri.cs.okayama-u.ac.jp/e-program-separate.html.
4Extended results are available in the supplementary material.

our method is a generic robust fitting approach, it would

also be interesting to customize it for specific tasks.
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